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7) Recursion
• recursive algorithm: the original problem is split into one or more 

simpler versions of itself. 
• General Recursive Algorithm: 

1. if the problem can be solved directly for the current value of n 
2.               Solve it 
3. else     recursively apply the algorithm to one or more problems 

involving smaller values of n 
4.              combine the solutions to the smaller problems to get the 

solution to the original
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Steps to Design a Recursive Algorithm
• Characteristics of Recursive Solution: 

• There must be at least one case (base care), for a small value of 
n, that can be solved directly 

• A problem of a given size (say, n) can be split into one or more 
clammer versions of the same problem (the recursive case) 

• Therefore: 
• Recognize the base case and provide a solution 
• Devise a strategy to split the problem into smaller versions of 

itself.  Each recursive case must make progress toward the base 
case. 

• Combine the solutions to the smaller problems in such a way 
that each larger problem is solved correctly.
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Proving Recursive Function is Correct
• Must verify by proof by induction 

• Prove that the theorem is true for the base case of (usually) n=0 
or n=1. 

• Show that if the theorem is assumed true for n, then it must be 
true for n+1
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Recursion v. Iteration
• Iteration 

• a loop repetition condition in the loop header determines whether we 
repeat the loop body or exit the loop.  Repeat the the loop body while 
the repetition condition is true. 

• Recursion 
• Test for base case. stop the recursion when the base case is reached 

and we execute the function body again when the condition is false. 
• easier to read and write 

• Tail Recursion: single recursive call in the last line 
• Efficiency: both are O(n) because the number of loop repetitions or 

recursive calls increase linearly with n. 
• iterative probably faster because the overhead for loop repetition 
• do recursive over iterative because easy to read and debug easier than 

such a small time difference 
• Storage 

• recursive requires more memory than iterative because the need to 
save local variables and parameters on a stack
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Recursive Search
• Vector search: simplest way to search a vector; O(n) linear 
• Binary search: only on sorted arrays.  works like linear search where the stopping cases 

are when the vector is empty, when the vector element being examined matches the 
target; O(log n) because eliminate half the elements with each call
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Review
• To prove that a recursive algorithm is correct 

• verify that the base case is recognized and solved correctly 
• verify that each recursive case makes progress toward the base 

case 
• verify that if all smaller problems are solved correctly, then the 

original problem must also be solved correctly 
• operating systems use activation frames, stored on a stack, to 

keep track of argument values and return points during recursive 
function calls.  Activation frames can be used to trace the 
execution of a sequence of recursive function calls. 

• mathematical sequences and formulas that are defined recursively 
can be implemented naturally as recursive functions 

• backtracking is a technique that enables you to write programs 
that can be used to explore different alternative paths in a search 
for a solution
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6.1) Set Theory: Definitions and Element 
Method of Proof

• A = {x∈ S | P(x)}, the set of all x in S such that P of x.
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6.2) Properties of Sets
• one set of x is a subset of another 

set Y and so to prove them you 
suppose that c is any particular but 
arbitrarily chosen element of X and 
you show that x is an element of Y.
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7.1) Functions Defines of General Sets 

• um, this was boring…
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5.2/3) Mathematical Induction I/II
• used to check conjectures about the outcomes of processes that 

occur repeatedly and according to definite patterns 
• Principle of Mathematical Induction: 

• Let P(n) be a property that is defined for integers n, and let a be 
a fixed integer.  Suppose that following statements are true 

• 1) P(a) is true 
• 2) For all integers k≥a, if P(k) is true then P(k+1) is true. 
• Then the statement for all integers n≥a, P(n) is true 
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Correctness of Algorithms
• pre-condition: initial state; post-condition: final state 
• Loop Invariant: a predicate with domain a set of integers, which satisfies the 

condition: For each iteration of the loop, if the predicate is true before the 
iteration, then it is true after the iteration. Furthermore, if the predicate 
satisfies the following two additional conditions, the loop will be correct with 
respect to its pre- and post-conditions: 
• It is true before the first iteration of the loop 
• If the loop terminates after a finite number of iterations, the truth of the 

loop invariant ensures the truth of the post-condition of the loop.
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