Induction and Recursion
. oop Invariants and
Program Correctness

Rachel Fishman
Koffman 7
Epp 6.1-6.2, 7.1-7.2, 5.2-5.3, 5.5

/) Recursion

* recursive algorithm: the original problem is split into one or more
simpler versions of itself.

* General Recursive Algorithm:
1. if the problem can be solved directly for the current value of n

2. Solve it

3. else recursively apply the algorithm to one or more problems
involving smaller values of n

4, combine the solutions to the smaller problems to get the

solution to the original

Steps to Design a Recursive Algorithm

 Characteristics of Recursive Solution:

 There must be at least one case (base care), for a small value of
n, that can be solved directly

* A problem of a given size (say, n) can be split into one or more
clammer versions of the same problem (the recursive case)

* Therefore:
* Recognize the base case and provide a solution

* Devise a strategy to split the problem into smaller versions of
itself. Each recursive case must make progress toward the base
case.

* Combine the solutions to the smaller problems in such a way
that each larger problem is solved correctly.

Proving Recursive Function is Correct

* Must verity by proof by induction

* Prove that the theorem is true for the base case of (usually) n=0
or n=1.

 Show that if the theorem is assumed true for n, then it must be
true for n+1

Recursion V. lteration

lteration

e a loop repetition condition in the loop header determines whether we
repeat the loop body or exit the loop. Repeat the the loop body while
the repetition condition is true.

Recursion

e Test for base case. stop the recursion when the base case is reached
and we execute the function body again when the condition is false.

e easier to read and write
Tail Recursion: single recursive call in the last line

Efficiency: both are O(n) because the number of loop repetitions or
recursive calls increase linearly with n.

* |terative probably faster because the overhead for loop repetition

e do recursive over iterative because easy to read and debug easier than
such a small time difference

Storage

* recursive requires more memory than iterative because the need to
save local variables and parameters on a stack

5

Recursive Search

» Vector search: simplest way to search a vector; O(n) linear
e Binary search: only on sorted arrays. works like linear search where the stopping cases
are when the vector is empty, when the vector element being examined matches the
target; O(log n) because eliminate half the elements with each call
Algorithm for Recursive Linear Search
1. 4f the vector is empty
2. The result 1s 1.
else if the first element matches the target
3. The result is the subscript of the first element.
else

4 Search the vector excluding the first element and return the result.

Binary Search Algorithm

1. if the vector is empty
2. Return -1 as the search result.
else if the middle element matches the target
3. Return the subscript of the middle element as the result.
else if the target is less than the middle element
4. Recursively search the vector elements before the middle element and
return the result.
else
5. Recursively search the vector elements after the middle element and

return the result.

Review

To prove that a recursive algorithm is correct
e verify that the base case is recognized and solved correctly

e verify that each recursive case makes progress toward the base
case

e verity that if all smaller problems are solved correctly, then the
original problem must also be solved correctly

operating systems use activation frames, stored on a stack, to
keep track of argument values and return points during recursive
function calls. Activation frames can be used to trace the
execution of a sequence of recursive function calls.

mathematical sequences and formulas that are defined recursively
can be implemented naturally as recursive functions

backtracking is a technigue that enables you to write programs
that can be used to explore different alternative paths in a search
for a solution

6.1) Set Theory: Definitions and Element
Method of Proot

e A =1Ixe S|P(x)}, the setof all xin S such that P of x.
| o Definiion

Given sets A and B, A equals B, written A = B, if, and only if, every element of A Let A and B be subsets of a universal set U.

isin B and every element of B is in A.
Symbolically:

1. The union of A and B, denoted A U B, is the set of all elements that are in at least
one of Aor B.
A=B ¢ ACBand B CA.

(]

. The intersection of A and B, denoted A N B, is the set of all elements that are
common to both A and B.

This version of the definition of equality implies the following: 3. The diff £ B mi A lativ : t of A in B), denoted
3. erence of B minus A (or relative complement of A in B), denote

To know that a set A equals a set B, you must know B — A, is the set of all elements that are in B and not A.
that A € B and you must also know that B € A.

not in A.

Given real numbers @ and b witha < b:

Symbolically: AUB=([xeU|x€e Aorx € B},
((l.b)=[.t€R|d<.l‘<bl l(l.bl=‘.l‘€R|aS.l'$b} Anle.TGULYEA&ndXGB’.
(@.bl={xeR|a<x <b) la, b)) ={x e R |a <x < b)}. B-A={xeU|xe Bandx ¢ A),

The symbols oo and —oc are used to indicate intervals that are unbounded either on A'=lxeU|x ¢ A).

the right or on the left:

@oo)=(xeR|x>a) [a,00 =(xeR|x>a) | e Definition
(=o00,b)={x € R|x < b} [-00,b)={x € R|x < b}. Unions and Intersections of an Indexed Collection of Sets

Given sets Ap, Ay, Az, ...thatare subsets of a universal set U and given a nonneg-
ative integer n,

n
UA. ={xeU|xe A;foratleastone i =0,1,2,....n)
il

Element Argument: The Basic Method for Proving That x
One Set Is a Subset of Another U A; = {x € U|x € A; for at least one nonnegative integer i }
=)
Let sets X and Y be given. Toprove that X C Y, "
. . — (Ai=(xeUl|xeAforall i =0,1,2,....n)
1. suppose that x is a particular but arbitrarily chosen element of X, 0

2. show that x isanelement of Y.

-
n A; = |x € U|x € A; for all nonnegative integers i}.

8 i=0

0.2) Properties of Sets

* one Set Of X |S a Subset Of another Theorem 6.2.1 Some Subset Relations
Set Y aﬂd SO tO prove them yOU . Inclusion of Intersection: For all sets A and B,
Suppose that CIS any par“CUlar bUt . Inclusion in Union: For all sets A and B,
arbitrarily chosen element of X and ()ACAUB and (b)B S AUB.
you show that x is an element of .

(aA)ANBCA and (b)ANBC B.

o

)

. Transitive Property of Subsets: For all sets A, B, and C,

fACBand BC C, then A C C.

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set U.

1

o

6.

. Identity Laws: For all sets A,

. Commutative Laws: For all sets A and B, 1. Idempotent Laws: For all sets A,
(aA) AUB=BUA and (b)ANB=BNA. (aA) AUA=A and (b)ANA=A.
. Associative Laws: For all sets A, B, and C, 8. Universal Bound Laws: For all sets A,
(A)(AUB)UC=AU(BUC) and (A)AUU =U and (b)ANKN =0,
(b)(ANB)NC=AN(BNC). 9. De Morgan’s Laws: For all sets A and B,
. Distributive Laws: For all sets, A, B, and C,

(ADAUB) =A"NB" and (b)Y(ANB) = A" U B".
(QDAUMBNCO)=(AUBIN(AUC) and 10
(h) 1“ m ([3 W (‘) = (l“ F] B) U (1“ m (_.).

. Absorption Laws: For all sets A and B,
(A)AUANB)=A and (b)AN(AUB) = A.

11. Complements of U and ¥:

aA)AUWN=A ¢ b)ANU = A.
Ol) @U =@ and (b)& = U.

. Complement Laws: . e .
f 12. Set Difference Law: For all sets A and B,

a) / AA=U ¢ JANA® =W,
(a) AUA [md (b)ANA) A—B—=ANB-.

Double Complement Law: For all sets A,

(A°)" = A.

7.1) Functions Defines of General Sets

* Definition Logarithms and Logarithmic Functions

Let b be a positive real number with b £ 1. For each positive real number x, the
logarithm with base b of x, written log, x, is the exponent to which 5 must be
raised to obtain x. Symbolically,

logo,x =y & b'=ux.

The logarithmic function with base b is the function from R™ to R that takes each
positive real number x to log, x.

* um, this was boring...

10

5.2/3) Mathematical Induction I/l

used to check conjectures about the outcomes of processes that
occur repeatedly and according to definite patterns

Principle of Mathematical Induction:

* Let P(n) be a property that is defined for integers n, and let a be
a fixed integer. Suppose that following statements are true

 1)P(a)is true
e 2) For all integers k>a, if P(k) is true then P(k+1) is true.
* Then the statement for all integers n=a, P(n) is true

Method of Proof by Mathematical Induction
Consider a statement of the form, “For all integers n > a, a property P(n) is true.”
To prove such a statement, perform the following two steps:
Step | (basis step): Show that P(a) 1s true.
Step 2 (inductive step): Show that for all integers k = a, if P(k) is true then
P(k + 1) 1s true. To perform this step,
suppose that P(k) 1s true, where k is any
particular but arbitrarily chosen integer with & > a.
[This supposition is called the inductive hypothesis./
Then

show that P(k + 1) 1s true.

11

For all integersn > 1,
nn+1)
—

—

14+24..-4+n=

[We will show that the left-hand side and the right-hand side of P(k + 1) are equal to
the same quantity and thus are equal to each other. |

Show that P(1) is true: . o .
tow that P(1) is true The left-hand side of P(k + 1) is

To establish P(1), we must show that
1(141) 1 42434---4+(k+1

| = S & FQ =14+2+34 Fhk4+(k+1)

But the left-hand side of this equation 1s 1 and the right-hand side 1s

kK(k<+1)
= . +k+1)

1(141) 2

’, -—
5 =5=1 Ckk+ 1) 2(k+1)
2 2
k*+k 2k +2
=72 T
k7 + 3k +]
-
- k(k+1) , 2
1+24+3+4--+k=) lantins Benadisnale And the right-hand side of P(k + 1) 1s

also. Hence P(1) is true.

Show that for all integers k = 1,if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k > 1.
That is:] Suppose that k is any integer with £ > 1 such that

[We must show that P(k + 1) is true. That is:] We must show that (k+ D(k+2) k* 4+ 3k + 1
k+ DIk +1)+1] 2 B 2 '
2 Thus the two sides of P(k + 1) are equal to the same quantity and so they are equal
or, equivalently, that to each other. Therefore the equation P(k + 1) is true [as was to be shown].
(k + Dk +2) . [Since we have proved both the basis step and the inductive step, we conclude that the

| 424344+ k+1)= ~ . theorem is true. |

1 4+2434--+k+1) =

12

Correctness of Algorithms

e pre-condition: initial state; post-condition: final state

* Loop Invariant: a predicate with domain a set of integers, which satisfies the
condition: For each iteration of the loop, if the predicate is true before the
iteration, then it is true after the iteration. Furthermore, if the predicate
satisfies the following two additional conditions, the loop will be correct with
respect to its pre- and post-conditions:

e |tis true before the first iteration of the loop

 |f the loop terminates after a finite number of iterations, the truth of the
00D invariant ensures the truth of the nost-condition of the loop.

I'heorem 5.5.1 Loop Invariant Theorem

Let a while loop with guard G be given, together with pre- and post-conditions that
are predicates in the algorithm variables. Also let a predicate /(n), called the loop
invariant, be given. If the following four properties are true, then the loop is correct
with respect to its pre- and post-conditions.

I. Basis Property: The pre-condition for the loop implies that 7(0) is true before
the first iteration of the loop.

II. Inductive Property: Forallintegers & > 0, if the guard G and the loop invari-
ant / (k) are both true before an iteration of the loop, then 7(k + 1) is true after
iteration of the loop.

III. Eventual Falsity of Guard: After a finite number of iterations of the loop, the
guard G becomes false.

IV. Correctness of the Post-Condition: If N is the least number of iterations after
which G is false and /(N) is true, then the values of the algorithm variables will
be as specified in the post-condition of the loop.

13

YOI HEAR YOU LIKEINDUCTION 'i'.'('; -

-~

- !
. 5

!
S0 | ASSUMED SOME INDUCTION TO PROVE THE

WALIDITY OF INDUCTION SO YOU CAN USE INDUCTION
WHEN YOU'RE PROVING INDUCTION I'M PROVING BY: INIlIIGTI(IN 10

STBATEGY Fﬂﬂ SET/THEORY:
= PROOFS?
B . Nh

YEll RANDOM lE'I'TEHS AND HﬂPE
 THEY:RERIGHT

