
Induction and Recursion
Loop Invariants and

Program Correctness
Rachel Fishman

Koffman 7
Epp 6.1-6.2, 7.1-7.2, 5.2-5.3, 5.5

7) Recursion
• recursive algorithm: the original problem is split into one or more

simpler versions of itself.
• General Recursive Algorithm:

1. if the problem can be solved directly for the current value of n
2. Solve it
3. else recursively apply the algorithm to one or more problems

involving smaller values of n
4. combine the solutions to the smaller problems to get the

solution to the original

2

Steps to Design a Recursive Algorithm
• Characteristics of Recursive Solution:

• There must be at least one case (base care), for a small value of
n, that can be solved directly

• A problem of a given size (say, n) can be split into one or more
clammer versions of the same problem (the recursive case)

• Therefore:
• Recognize the base case and provide a solution
• Devise a strategy to split the problem into smaller versions of

itself. Each recursive case must make progress toward the base
case.

• Combine the solutions to the smaller problems in such a way
that each larger problem is solved correctly.

3

Proving Recursive Function is Correct
• Must verify by proof by induction

• Prove that the theorem is true for the base case of (usually) n=0
or n=1.

• Show that if the theorem is assumed true for n, then it must be
true for n+1

4

Recursion v. Iteration
• Iteration

• a loop repetition condition in the loop header determines whether we
repeat the loop body or exit the loop. Repeat the the loop body while
the repetition condition is true.

• Recursion
• Test for base case. stop the recursion when the base case is reached

and we execute the function body again when the condition is false.
• easier to read and write

• Tail Recursion: single recursive call in the last line
• Efficiency: both are O(n) because the number of loop repetitions or

recursive calls increase linearly with n.
• iterative probably faster because the overhead for loop repetition
• do recursive over iterative because easy to read and debug easier than

such a small time difference
• Storage

• recursive requires more memory than iterative because the need to
save local variables and parameters on a stack

5

Recursive Search
• Vector search: simplest way to search a vector; O(n) linear
• Binary search: only on sorted arrays. works like linear search where the stopping cases

are when the vector is empty, when the vector element being examined matches the
target; O(log n) because eliminate half the elements with each call

6

Review
• To prove that a recursive algorithm is correct

• verify that the base case is recognized and solved correctly
• verify that each recursive case makes progress toward the base

case
• verify that if all smaller problems are solved correctly, then the

original problem must also be solved correctly
• operating systems use activation frames, stored on a stack, to

keep track of argument values and return points during recursive
function calls. Activation frames can be used to trace the
execution of a sequence of recursive function calls.

• mathematical sequences and formulas that are defined recursively
can be implemented naturally as recursive functions

• backtracking is a technique that enables you to write programs
that can be used to explore different alternative paths in a search
for a solution

7

6.1) Set Theory: Definitions and Element
Method of Proof

• A = {x∈ S | P(x)}, the set of all x in S such that P of x.

8

6.2) Properties of Sets
• one set of x is a subset of another

set Y and so to prove them you
suppose that c is any particular but
arbitrarily chosen element of X and
you show that x is an element of Y.

9

7.1) Functions Defines of General Sets

• um, this was boring…

10

5.2/3) Mathematical Induction I/II
• used to check conjectures about the outcomes of processes that

occur repeatedly and according to definite patterns
• Principle of Mathematical Induction:

• Let P(n) be a property that is defined for integers n, and let a be
a fixed integer. Suppose that following statements are true

• 1) P(a) is true
• 2) For all integers k≥a, if P(k) is true then P(k+1) is true.
• Then the statement for all integers n≥a, P(n) is true

11

12

Correctness of Algorithms
• pre-condition: initial state; post-condition: final state
• Loop Invariant: a predicate with domain a set of integers, which satisfies the

condition: For each iteration of the loop, if the predicate is true before the
iteration, then it is true after the iteration. Furthermore, if the predicate
satisfies the following two additional conditions, the loop will be correct with
respect to its pre- and post-conditions:
• It is true before the first iteration of the loop
• If the loop terminates after a finite number of iterations, the truth of the

loop invariant ensures the truth of the post-condition of the loop.

13

